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1 Introduction

Microfluidic processes for chemical synthesis have become popular in recent
years. The small scale of the chemical reactions promise greater control over
reaction conditions and more timely creation of products. The small scale
of microfluidics poses its own set of problems, however. At the microscale,
the dominant fluid forces are viscous resistance and surface tension. The
effects of viscosity and scale reduce the Reynolds number and make mixing
difficult. Much work has been done to control mixing at the microscale [2],
[4], [5], [6].

This problem is concerned with a different microfluidic problem: deliv-
ering reactants to the site of reaction. A common setup is to attach syringes
full of reactant to a reaction chamber by narrow hydrophobic tubing. Using
a stepper motor, a controlled dose of liquid may be injected into the tube.
The hydrophobosity causes the dose to curve outward on the sides, becom-
ing a “slug” of reactant with air in front and behind. The syringe at the
rear is then switched for one full of air, and air pressure is used to drive the
slug to the reaction site.

If too much pressure is applied, the slug will arrive with a significant
back pressure that will be relieved through bubbling in the reaction site.
This causes the formation of a foam and is highly undesirable. We present a
simple model based on Boyle’s law for the motion of a slug through a tube.
We then extend this model for trains of slugs separated by air bubbles. Last,
we consider the case of a flooded reaction site, where the forward air bubble
must be pushed through the flooding liquid.
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Figure 1: Schematic of a single slug moving along a tube.

2 Single slug model

We consider a single slug of aqueous solution at a location x̂(t) and of length
` in a hydrophobic tube.1 In front of the bubble, there is a volume of gas

Vf = At

(
Lt − (x̂+ ˆ̀)

)
, (1)

where At is the cross-sectional area of the tube and Lt is the length of the
tube. The volume of gas behind the slug is

Vb = As[Ls − ŷ(t)] +Atx̂, (2)

where As is the area of the syringe and Ls is the length of the syringe. The
function ŷ(t) is the location of the syringe piston and is specified by the
user. See Fig. 1 for a schematic

and Table 1 for a summary of notation and scale.
Initially,

x̂(0) = 0 (3)
ŷ(0) = 0 (4)
dx̂

dt
= 0, (5)

corresponding to a slug at rest backed up against the mouth of a syringe
whose piston is fully extended. These give initial volumes of

V o
f = At(Lt − ˆ̀) (6)

V o
b = AsLs. (7)

1Variables with hats or in capital letters are dimensional quantities.
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Quantity Value Description
Lt 5 m Length of tube
rt 2.5× 10−4 m Radius of tube
At 10−7 m2 Cross-sectional area of tube
Ls 5× 10−2 m Length of syringe
As 4× 10−7 m2 Cross-sectional area of syringe
Patm 105 Pa Atmospheric pressure
ˆ̀
i 10−2 m Length of ith slug
d̂i 10−2 m Distance between slugs i and i+ 1
ρ 103 kg/m3 Density of slug
µ 10−3 Pa/s Dynamic viscosity of slug
γ 10−1 N/m Surface tension of slug
θ 150◦ Contact angle of slug with tube

Table 1: Relevant physical scales for problem parameters

When y > 0, the gas in the bubble behind the slug is compressed. Assuming
the system is isothermal, the new pressure is given by Boyle’s law as

Pb = Patm
V o

b

Vb
. (8)

Converting this pressure to a force by multiplying by the facing surface area
of the slug and using Newton’s law gives

At(Pb − Pf ) = m
d2x̂

dt̂2
+ c

dx̂

dt̂
, (9)

for forward pressure Pf , slug mass m and a damping c due to viscosity
discussed shortly. As the gas in front of the slug is open to the atmosphere,
Pf = Patm, and so

AtPatm

(
V o

b

Vb
− 1
)

= ρAt
ˆ̀d

2x̂

dt̂2
+ c

dx̂

dt̂
. (10)

Nondimensionalizing according to Table 2 yields(
1

1 + δ(x− y)
− 1
)

= α
d2x

dt2
+ β

dx

dt
. (11)

The parameters α and β represent scaled mass and damping, respectively.
The ratio δ sets the strength of piston depression to compression.
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Symbol Definition Scale Note
x x̂/Lt O(1) Location of slug in tube
y ŷAs/(AtLt) O(1/δ) Displacement of piston.
t t̂/T Arb. Imposed timescale
δ (AtLt)/(AsLs) ≈ 1/4 Ratio of tube volume to syringe volume
`i ˆ̀

i/Lt O(10−3) Relative length of slug i
di d̂i/Lt O(10−3) Relative separation slugs i and i+ 1
αi (ρˆ̀

iLt)/(PatmT
2) O(10−3) Inertia parameter

βi (8πµˆ̀
iLt)/(AtPatmT ) O(1) Damping parameter

p∗ P∗/Patm 1.01 Overpressure

Table 2: Nondimensionalization of model variables and parameters. Vari-
ables shown with hats or in capital letters have dimension.

2.1 Frictional resistance to motion

The motion of the slug is retarded by frictional effects, including viscous
loss inside the slug, losses from turning flow at the free surfaces of the slug,
and losses from the moving contact line between the slug and tube. This
last effect is small, as the tube is hydrophobic so the contact line may move
with minimum impediment. The second effect is more important in slugs
with small ` and for large Re. We will focus on the first effect, the viscous
loss inside the flow set up in the slug through motion.

The Reynolds number is

Re =
Uo
√
At/πρ

µ
= O(10) (12)

for lengthscale L =
√
At/π and velocity scale Uo ≈ 4 cm/s. At this moderate

value, the fluid follows Poiseuille flow set up by the motion on the slug
through the tube with no-slip conditions. Standard references, e.g. [1] give
the average fluid velocity down the tube as

ū =
∆PAt

8πµˆ̀ . (13)

This speed must match dx
dt for the slug to be coherent. Using (10), the left-

hand side is the pressure drop across the slug times the area, equivalent to
∆PAt. Neglecting inertia, we have

At (Pb − Pf ) = (8π ˆ̀)
dx

dt
. (14)
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Nondimensionalizing, we obtain

β =
8πµˆ̀Lt

AtPatmT
. (15)

For T = 1 s, β ≈ 0.4.

2.2 Simplified models

The model (11) suggests two simplifications: removal of inertia, and the
removal of damping. We consider each in turn.

The inertia parameter α is small for modest timescales, about 10−3. If
this term is dropped, the remaining ODE is a first order differential equation
with nonlinear forcing: (

1
1 + δ(x− y)

− 1
)

= β
dx

dt
. (16)

In this model, the slug’s motion is monotonic, with x increasing from zero to
its equilibrium value (given below) without overshooting its final position.
However, the assumption that α is negligible depends on the timescale T .
As α ∝ T−2, rapid depression of the piston will cause alpha to be large and
oscillatory behaviour to be possible.

As the mass α is small and β is modest, to a rough approximation the
gas is incompressible. In this situation, the dimensional position of the slug
is just

x̂ =
As

At
ŷ. (17)

This is also the equilibrium location of a slug in (11), the point at which
Pb = Pf and there is no longer any forcing. Another insight from this limit
is that the size of β determines the magnitude of the pressure jump across a
slug. Very viscous slugs behave like solid stoppers, allowing the back bubble
to become highly pressurized. Nearly inviscid slugs move quickly as the back
pressure changes. Two factors main factors control β: the length of the slug
ˆ̀ and the timescale T of the forcing. Long slugs and rapid motion of the
piston result in larger β values and hence larger pressure drops across a slug.

2.3 Phase-plane analysis

We wish to know under what conditions a slug may overshoot its equilibrium
position (17) depending on the relative sizes of α, β and δ. Notably the
parameters α and β vary with the timescale over which the the plunger
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is depressed and also with the length of the slug. We proceed by using
standard phase-plane analysis of the linear o.d.e. (11).

If we write u = ẋ, where a dot denotes differentiation with respect to
time, we find that the phase-plane equation for (11) is

du

dx
=
−δ(x− y)− βu[1 + δ(x− y)]

αu(1 + δ(x− y)
. (18)

Therefore a singular point exists when u = 0 and x = y. In order to examine
the phase-plane local to the singular point we put x = y + X and u = U
with |X|, |U | � 1. At leading order the phase plane equation becomes

dU

dX
≈ −δX − βU

αU
(19)

and consequently we find that the nature of the singular point is determined
by the sign of β2− 4δα. In particular when β2 > 4δα the singular point is a
stable node. This particular case corresponds to overdamping - the slug will
come to rest at the singular point and it will not overshoot the equilibrium
position x = y. On the other hand, if β2 < 4δα then the singular point is a
stable spiral point; this corresponds to underdamping - the slug will oscillate
about the singular point at x = y before coming to rest. That is to say in
this case the slug will overshoot the equilibrium position.

Observe that the critical value β2 = 4δα is equivalent to a critical length

l̂crit =
4ρA3

tPatm
64π2µ2AsLs

(20)

If the slug length exceeds this value then the slug will be overdamped, if the
slug length is below this value then the slug will be underdamped. Inter-
estingly the dynamic behaviour of the slug is independent of the timescale
T over which the plunger is depressed. Substituting orders of magnitude
estimates for the values of each parameter reveals l̂crit ≈ 0.03m.

2.4 Results

Figure 2 shows the position x(t) of the slug as it moves through the tube
given a linear depression y(t) of the syringe pump. The slug very quickly
accelerates up to a constant speed until the plunger reaches the end of the
syringe. The pressure either side of the slug then begins to equalise so
the slug decelerates until it comes to rest in the equilibrium position yeq.
Figure 3 shows the corresponding velocity profile. The discontinuity in the
gradient corresponds to the point at which the plunger reaches the bottom
of the syringe when the pressure behind the slug begins to decrease as the
volume behind it increases.
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Figure 2: The position x(t) for a single slug in a tube for which the reaction
chamber is empty. The dashed line shows the syringe compression y(t).
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Figure 3: The velocity x′(t) for a single slug in a tube for which the reaction
chamber is empty corresponding to figure 2.
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3 Flooded reaction chamber

The reaction chamber at the end of the tube is a cylinder of radius rc = 1.5×
10−3m and height lc = 5×10−3m. The tube carrying the slug enters parallel
and level to the bottom, as shown in Fig. 1. When 5 µL of fluid arrive, the
reaction chamber is flooded. Any new slugs that are to be forced into the
chamber will have a forebubble of gas that must be forced through the liquid
blocking the end of the tube. To model this, we replace atmospheric pressure
in (10) with an expression for the pressure in the forebubble Pf .

The compressibility of the gas gives

Pf =
V o

f

Vf
Patm =

(1− `)
(1− x− `)

Patm,

provided that the forebubble is at atmospheric pressure initially. However,
Pf cannot increase forever. Eventually, the high pressure will deform the liq-
uid/air interface at the mouth of the reaction chamber. The meniscus here
will bend into the chamber, eventually pinching-off into a bubble. The pres-
sure above atmospheric pressure required to bend this interface backward
(see [1]) is given by

∆P = 2γκ,

where κ is the curvature of the interface. Near pinch-off, κ ≈ 1/rt, provided
that the Reynolds number of the gas is O(1) [3]. Thus,

P∗ − Patm = 2γ/rt ≈ 103 Pa. (21)

This overpressure P∗ is only different from Patm by a factor that is a hun-
dredth of an atmosphere.

As the slug moves forward, Pf increases to P∗. At P∗, bubbles begin to
form in the reaction chamber. These bubbles have pressure P∗ and volume
Vbub ≈ 4

3πr
3
t . The pressure in Pf stays at P∗, but the volume Vf decreases

as gas mass is lost through bubbling. This leads to the piecewise defined
forepressure

Pf = min
(
P∗,

(1− `)
(1− x− `)

Patm

)
. (22)

Defining p∗ = P∗/Patm as the dimensionless overpressure, we arrive at[
1

1 + δ(x− y)
−min

(
p∗,

1− `
1− x− `

)]
= α

d2x

dt2
+ β

dx

dt
. (23)

The equilibrium location (17) no longer holds for this model, as equilibrium
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Figure 4: The back pressure pb and forward pressure pf of a slug heading
toward a flooded reaction chamber. The pressure p∗ is the value at which
bubbling occurs.
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Figure 5: The position x(t) for identical slugs with and without a flooded
reaction chamber. The pumping protocol y(t) is the same for both simula-
tion, resulting in a visible miss of the target by a distance ye for the slug
with a flooded chamber.

is now achieved when the fore and back pressures are both P∗. A simple
correction is to add an amount ye to y(0), where

ye =
AsLs

AtLt
+ 1− `− (1− x− `)/p∗ −

AsLs

AtLt
/p∗ (24)

is the distance the piston must be depressed to just pressurize all of the gas
to P∗. The new equilibrium is given by

x̂ =
As

At
(ŷ + ŷe) . (25)

3.1 Bubbling frequency

We may estimate the frequency of bubbling when pushing the gas in the
forebubble through a flooded reaction chamber by assuming that bubbles
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form as soon as enough mass of gas has been forced into the reaction cham-
ber liquid. This is an approximation that assumes a monodisperse bubble
size and an infinitely fast relaxation of the air/liquid interface between the
reaction chamber fluid and the forebubble.

Under these assumptions, we estimate the rate of bubble formation as
the rate of mass loss in the forebubble divided by the mass per bubble. The
rate of mass loss is given by taking the ideal gas law

P∗Vf =
rΘ
M
mf ,

for gas constant r, temperature Θ, molar mass M , and mass mf , and dif-
ferentiating in time to obtain

dmf

dt̂
=
P∗M

rΘ
dVf

dt̂
. (26)

The rate of volume loss is given by differentiating (1). Combined with the
above, we obtain

dmf

dt̂
= −P∗MAt

rΘ
dx̂

dt̂
. (27)

To find the mass per bubble, we assume that all bubbles will have an identical
radius rt =

√
At/π, the radius of the tube through which they are blown.

The pressure in each bubble must be P∗. This follows from the estimation
of P∗ as the pressure required to bend the meniscus backward. In that case,
we may again use the ideal gas law to see that

mbub =
P∗MAt

rΘ
4
3
rt. (28)

We have used a bit of elementary geometry to rewrite the volume of the
bubble in terms of At. Combining (27) and (28), we obtain the frequency
of bubble formation as

φbub = − 3
4rt

dx̂

dt̂
. (29)

While varying the speed of the slug will vary the rate of bubble formation
as shown, the number of mbub-sized bubbles that will form will be dictated
by the mass of gas that must be expelled from the forebubble:

Nbub =
mf

mbub
=

3Patm(Lt − ˆ̀)
4P∗rt

, (30)

where we assume that the forebubble has an initial pressure Patm.
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Figure 6: Schematic of a two-slug system.

3.2 Results

Figure 5 shows the position x(t) of a slug when the reaction chamber is
flooded alongside a plot of the position when the reaction chamber is empty.
We see that the behaviour is largely the same except now, in the flooded
case, the slug comes to rest a distance ye short of the previous equilibrium
position. This is because the forcing stops when the back pressure pb reaches
the bubbling pressure p∗ > pAtm. This is highlighted by figure 4 which shows
the back pressure pb and forward pressure pf as a function of time. The
forward pressure appears to linearly approach p∗, at which point bubbling
in the flooded chamber occurs and so the forward pressure is maintained at
this value. The back pressure increases to a value greater than p∗ while the
plunger is being depressed. When the plunger reaches the end of the syringe
the back pressure drops smoothly as the gas behind the slug expands and
the slug moves rightwards. It finally reaches the value p∗ at which point the
slug reaches its equilibrium position.

4 Multiple slugs in a tube

A sketch of the two-slug problem is shown in figure 6. In this case we define
a back volume behind the first slug as

Vb1 = Atx̂1 +As(Ls − ŷ) (31)
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which includes the volume of the syringe2. Similarly, a volume in front of
the first slug and behind the second slug is defined as

Vb2 = At(x̂2 − x̂1 − l̂1) (32)

where l̂1 is the length of the first slug. The corresponding pressures are
again assumed to satisfy Boyle’s law and hence:

Pb1 =
V 0

b1
Patm

Atx̂1 +As(Ls − ŷ)
, (33)

and

Pb2 =
V 0

b2
Patm

At(x̂2 − x̂1 − l̂1)
, (34)

where V 0
b1
, V 0

b2
are the initial volumes behind each slug.

The motion of each slug is driven by the pressure across it so the equa-
tions of motion are

AtPatm

(
V 0

b1

Atx̂1 +As(Ls − ŷ)
−

V 0
b2

At(x̂2 − x̂1 − l̂1)

)
= m1

¨̂x1 + c1 ˙̂x1, (35)

and

AtPatm

(
V 0

b2

At(x̂2 − x̂1 − l̂1)
− 1

)
= m2

¨̂x2 + c2 ˙̂x2. (36)

Observe that this system assumes that the reaction chamber that has not
yet been flooded.

We nondimensionalise in a similar way as before, together with now
defining V 0

b1
= AsLs and Vb2 = Atd̂1 where d̂1 = (x0

1−x0
2−l02) is the initial dis-

tance between the slugs. Nondimensional parameters l1 = l̂1/Lt, d1 = d̂1/Lt

are also introduced alongside αi = ρl̂iX/(PatmT
2), βi = 8πl̂iµX/(AtPatmT )

for i = 1, 2. Consequently we reach[
1

δ(x1 − y) + 1
− d1

x2 − x1 − l1

]
= α1ẍ1 + β1ẋ1 (37)

and [
d1

x2 − x1 − l1
− 1
]

= α2ẍ2 + β2ẋ2 (38)

2Recall that variables with hats or in capital letters are dimensional quantities.

14



as a coupled system of o.d.e.’s for the two slug problem. This is easily
generalised to multiple slugs, for which the system of o.d.e.’s is:[

1
1 + δ(x1 − y)

− d1

x2 − x1 − `1

]
= α1

d2x1

dt2
+ β1

dx1

dt[
di−1

xi − xi−1 − `i−1
− di

xi+1 − xi − `i

]
= αi

d2xi

dt2
+ βi

dxi

dt[
dn−1

xn − xn−1 − `n−1
− pf (xn; p∗)

]
= αn

d2xn

dt2
+ βn

dxn

dt

(39)

where

pf (xn; p∗) =

{
min

(
p∗,

1−`
1−xn−`n

)
flooded

1 not flooded
(40)

These equations therefore also include the foaming effect of having a flooded
reaction chamber as discussed in section 3.

4.1 Results

Figure 7 shows the position of two slugs of equal length as they move through
the tube toward an empty reaction chamber. The distance between the
slugs becomes slightly compressed whilst the plunger is being depressed and
then they move along together with an equal speed. After the plunger has
reached the end of the syringe, the distance between the slugs relaxes to its
equilibrium value and the slugs remain separated at a fixed distance. The
velocity profile is highlighted in figure 8.

Figure 9 then shows the position of two slugs for the case when the length
of the first slug is twice the length of the second slug. Similarly, figure 10
again shows the velocity profile. The behaviour is qualitatively exactly the
same as in the previous case.

5 Recommendations

The model (11) should predict the position of the slug as a function of the
piston position. Using the length criterion (20) will ensure that motion
is monotonic. The pumping protocol y(t) may be selected so as to avoid
fragmenting slugs.

The principle difficulty lies in avoiding foaming in the reaction chamber.
Foaming is caused by pushing the gas in Vf , the forward bubble, through
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Figure 7: Position x(t) for two slugs of equal length. Again, the reaction
chamber is assumed to be empty and the dashed line shows the syringe
compression y(t).
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Figure 9: Position x(t) of two slugs for the case where l1 = 2l2. The dashed
line shows the syringe compression and the reaction chamber is assumed to
be empty.
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the liquid in flooding the chamber. There are two general ideas to reduce
foaming.

First, the volume of air at Patm that must be forced through the liquid
must be kept to a minimum. If there are multiple tubes into the reaction
chamber, slugs in each tube should be queued up at the edge of their tubes
before any slug is allowed in to flood the chamber. If multiple slugs are
to be delivered along a single tube, these slugs should be grouped into a
“train” of slugs so that the bubble between adjacent slugs is small. The
dynamics of such trains was discussed in Section 4. Adding a small amount
of air-permeable membrane tubing to the end of the tube would also allow
gas to vent rather than being forced through liquid in the reaction chamber.

Second, the pressure behind a slug must not be allowed to rise too far
beyond P∗. At the instant of absorption of a slug into the reaction chamber,
the pressure behind the slug must be greater than P∗ as there must have
been a pressure gradient across the slug. Thus, this overpressure will be
relieved by bubbling through the front liquid. The higher the back pressure
is above P∗, the more violent this bubbling will be. Using the model in
3.1 will allow an operator to determine the overpressure between slugs and
design ŷ(t̂) to compensate.

Most of the model parameters may be estimated through simple exper-
iments. The damping β may be related to the pressure drop across a slug
through (11). When a slug moves at a constant speed (e.g. the middle
regime of Fig. 2, ẋ = ẏ, and so x− y → C for some constant C. Thus

β =
1
ẋ

(
1

1 + δC
− 1
)
.

The bubbling pressure P∗ may be measured by flooding the reaction cham-
ber, then pushing air into a dry tube. When bubbles begin to form in the
reaction chamber, P∗ has been reached. Noting the depression of ŷ at the
time of bubbling gives

P∗ =
(

AsLs +AtLt

AsLs +AtLt −Asŷ

)
Patm.

The inertial parameter α may be calculated directly.
In conclusion, we have determined the dynamics of a single slug moving

towards an empty reaction chamber giving the final equilibrium position
of the slug. A phase-plane analysis then determined a condition on the
size of the slug needed to ensure that it comes to rest without oscillating
about the equilibrium position. The effect of a flooded reaction chamber
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was then considered. In this case it is impossible to avoid bubbling due to
the design of the device. We found that it is possible, however, to reduce
the bubbling by minimising the back pressure behind the slug. Finally, the
dynamics of multiple slugs with or without a flooded reaction chamber has
been investigated.
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