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Abstract. This note proposes an alternative to both the 'transient hot-wire
method' and the 'transient hot-strip method'. A mathematical model is developed
and an analytic solution is provided. The 'flat iron device' may have advantages
for rapidly measuring changes in conductivity, as can occur in food products.

1. Introduction

It has been argued by Gustafsson et al (see ego Gustafsson et al 1979, 1984, 1991)

that the transient hot strip method is superior to the transient hot wire method (see
ego McLaughlin and Pittman (1971)) since the hot wire method is restricted to fluids or
other substances than can envelop the wire. They point out that the hot strip method
can now deal with any solid with low electrical conductivity; this is achieved by using the
metal strip both as a continuous plane heat source and as a sensor of the temperature
increase in the strip itself.

The power will remain very nearly constant if a constant current is supplied to
the metal strip. Thus it is possible to obtain the thermal properties of the material

surrounding the heat source by monitoring the voltage increase over a short period of
time. The temperature increase causes an increase in the electrical resistance of the metal
strip with a consequent voltage increase.

For this device to work well it is necessary to press two slabs of material against the
metal strip so that the strip approximates a plane heat source. If, however, there is only

one specimen material this device becomes less attractive and probably not applicable.
Yet the need to measure conductivity (or more precisely, changes in conductivity) is not

uncommon. For instance, in the Food Industry it would be extremely useful to have a
device which could rapidly measure changes in the thermo-physical properties of a single

specimen, for example a piece of fish or a beefburger.

The purpose of this note is simply to put forward the idea of a flat iron device, to
build a mathematical model and develop an analytic expression for the temperature at

its surface, thereby suggesting its feasibility.
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2. The flat iron device

The flat iron device, as the name suggests, is a rectangular block of iron. Its 'flat'
surface contains many parallel shallow grooves in which is embedded an insulated cable

and a resistor. A constant current is passed through each resistor which varies linearly
with the temperature: the temperature at the surface is then determined by the average
voltage drop. A cross-section is displayed in diagram 1.

. ~ resistor

Iron ~

o ----~~------
specimen material

diagram 1

3. The mathematical model

Let Tl and T2 be, respectively, the temperatures in the iron and the specimen, and
let TA denote the ambient temperature. On the assumption of many parallel heating
resistors and that the interest is only in the temperature near to the heating elements a
one dimensional model will suffice. Let z point in the outward direction from the heating
element as shown in diagram 1.

The model can be expressed as two coupled diffusion equations as follows:

aT1 82Tl
PICI at = kl 8x2

lim TI(z , t) = 1'.4., TI(z , 0) = T.4.
x--oo

together with the coupling boundary conditions

aT1 8T2
- kl 8x + k2 8x = 0:(1 + f3T1), 0: > 0, at x = 0 for all t,
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where Pi,Ci, and ki(i = 1,2) are, respectively, the density, specific heat and thermal
diffusivity of the iron and the specimen, and a and {3 are known constants depending

upon both the constant current and how the heater wire changes with temperature.
By introducing the new dependent variables

the above initial-boundary problem reduces to

8T} _ K 82T}
8t - } 8z2

lim T}(z,t) = 0,
x-oo

(la)

(lb,c)

8T2 = K2 82
T2

at 8z2

lim T2(z, t) = 0,
%-+-0:>

(2a)

(2b,c)

T} (0, t) = T2(0, t) (3a)
er, 8T2- k} 8z + k2 8z = a(l + (3TA + (3TJ), a > 0, at z = ° for all t. (3b)

Note that the dashes have been dropped for reasons of clarity.

4. Analytic· solution

Define the Laplace transforms with respect to t

Ti(Z,p) = 100 e-pt Ti(Z,t)dt

Equation (la) (with (lb,c)) reduces to

i = 1,2.

yielding the general solution

where A}(p) and B}(p) are arbitrary functions of p.
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Similarly, equation (2a) (with (2b, c)) yields the solution

where A2(p) and B2(p) are arbitrary functions of p.
Conditions (lb) and (2b) imply A1(p) = B2(p) = 0 giving

T1(z,p) = B1(p)e-Jqlx

T2(z,p) = A2(p)ev'92x .

Further, from (3a) we deduce that B1(p) = A2(p) = A(p), say, resulting in

(4)

and

(5)

Now taking Laplace transforms with respect to time in (3b) results in

giving, upon using (4) and (5),

at z = o.
Hence

A(p) = 0(1 + {3TA) •
p{(kd~ + kd.;K;)Jp - a3}

Thus, substituting (6) into (4) gives

(6)

(7)

where
00 = a(l + {3TA)

kl k2
al = JKl + JK2

a=-a{3/01.
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Taking inverse Laplace transforms of (7) yields

(see Abramowitz and Stegun, page 1027).

Hence
(8)

5. Graphical presentation

In this section the temperature at the surface of a flat iron device which is made of
aluminium and residing against a meat product is displayed graphically. The densities,
specific heats and thermal diffusivities are displayed in Table 1. The graphs were obtained

by plotting the expression (8) against time. The results are not surprising showing a
steady (and eventually unbounded) increase in the temperature. A meat product which
had 'gone off' would display a different temperature profile as a result of the changed
thermal properties and so could be relatively rapidly identified.

p c k

Aluminium 2700Kg/m3 0.9KJ/KgoC 240W/moC

Food (meat) 1050Kg/m3 3.5KJ/KgoC 0.5W/moC

Table 1
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