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1 Introduction and Motivation

The problem brought to the MPI workshop by representatives from the GE
Visualization and Computer Vision Laboratory concerned the rapid auto-
matic identification of defects in industrial parts based on digitized images

captured from X-ray scans [12]. Key defect types of concern include:

e void regions, which could be caused by liquid metal flowing too slowly

during the casting process to equilibrate its density (Figure 1),



Figure 1: 3 voids in aluminum (aluminium) wheel [12])

e fractures, which could be caused by mechanical stresses in response to
temperature gradients, and

e undesired inclusions, such as sand failing to evacuate a region which
should be free of material.

GE has defect detection algorithms based on nonparametric statistical
fitting, trained on data sets, which work well for two-dimensional data, but
their extension to three-dimensional scans is unclear. The goal of the working
group was to try to formulate some novel approaches to detecting defects
in three-dimensional scans of the parts. Quantitatively, we are presented
with an image represented as a three-dimensional array of voxels (volumetric
picture elements), each of which has an intensity value associated to it. This
intensity refers to the amount of radiation scattered from that voxel to the
imaging apparatus, as estimated by an algorithm which reconstructs the
three-dimensional image from the radiation measurements received by the
camera. While the reconstruction algorithm used by GE is state-of-the art,
we must keep in mind that it does introduce some noise and inaccuracies.
The goal of an automated detection algorithm is to identify the location of
defects (if any) in the test part, given the three-dimensional array of intensity
data for a test part, together perhaps with whatever information we desire
from an ideal reference for the part. The quantitative operational goals are
that 95% of all defects are found, no more than one false positive defect is
identified per part, and that the algorithm does not require more than on
the order of one minute per part inspected.

In this report, we summarize the ideas and developments which emerged
from the interaction of the GE representatives with the academic partici-



pants at the workshop. We begin in Section 2 with some statistical analysis
of the noise in the images as inferred from a collection of images of differ-
ent instances of a given part. The purpose of quantifying the properties of
the noise is twofold: 1) to give some idea of the challenge the imaging noise
presents in identifying defects, and 2) to provide a basis for a statistical model
for the noise that could be used in a probabilistically-based detection algo-
rithm. Next, in Section 3, we present a mathematical toy model for defective
part images which seems to have many of the key features in the real part
images. Such a simplified mathematical model can be helpful in developing
image detection algorithms because all its details are available to us. In par-
ticular, in the mathematical model, we know (by construction of the model)
whether an aberration detected by the algorithm is associated to a real defect
or to a noisy intensity fluctuation or image reconstruction artifact. Such de-
tailed information may not be inferrable from the actual images. Moreover,
the mathematical model has many easily adjustable parameters, which can
help us determine for which regimes a given detection algorithm works well.
For example, we can vary at will the sizes of defects, the level of the imaging
noise, and the thickness of the sample. We then present three conceptual
approaches to defect detection which were discussed during the workshop.
First, in Section 4, we present a geometric approach in which a reference
surface is generated which separates the interior of the part (which should
be metallic) from the exterior (which should be air). The interior region
is tested for the presence of anomalously low intensity (corresponding to a
putative undesired void), while the exterior region is tested for the presence
of anomalously high intensity (corresponding to the presence of undesired
material). Next, in Section 5, we sketch an idea for expanding the voxel data
with respect to a suitable orthonormal basis of functions, some of which are
characteristic of defects. Curvelets [2, 19] seem like a promising candidate, in
that they can identify the presence of suspicious geometric features. Third,
in Section 6, we briefly present an idea for detecting occlusions to void re-
gions, by examining whether the topology of the test images is consistent
with that of the ideal reference. We finally conclude in Section 7 with some
suggestions for future investigation.



2 Noise Model

As one of the objectives is for the defect detection algorithm to be robust
against the noise arising from the imaging process, we examined the statistics
of the noise from some sample images. We expect, and do find, that the level
of noise is dependent on the expected intensity of a voxel. For clarity, we
work with a normalized intensity variable I ranging from 0 to 1, where the
value 1 corresponds to the maximum intensity observed in a pixel. This
maximum intensity may be interpreted as the ideal intensity corresponding
to a voxel that is entirely filled with material. Ideally, void regions should
return 0 intensity values. The imaging process and the algorithm used to
approximately reconstruct the actual image from the raw image will create
deviations from this ideal intensity profile in the following ways:

e Voxels containing material deep below the surface will be represented
with a reduced intensity due to scattering and absorption of photons
by intervening material (photon starvation)

e The reconstruction algorithm will tend to blur the intensity of a voxel
with those of neighboring voxels. Therefore, voxels near edges between
material and void regions can be expected to exhibit intensity values
somewhat between 0 and 1.

Taking into account these imaging issues as well as the fact that the
images will not always be perfectly aligned with one another, the statistics
of the intensity of a voxel from an image can be expected to behave as follows:

e The mean intensity will tend to be larger in material regions than
in void regions, but will generally decrease in voxels that lie behind a
substantial amount of material. In fact, the observed intensity of a ma-
terial region deep within the part may actually be below the observed
intensity of a void region near the surface.

e The standard deviation of the intensity should be most pronounced
near edges, and therefore for intermediate values of the intensity. This
high variability for voxels near the edges arises because the intensity
observed in the voxel will be very sensitive to how exactly the edge is
aligned in the given image. That is, the spatial intensity of the gradient
is large here and so small spatial shifts in the image will create large
changes in intensity.



These suppositions are borne out in analysis of the data of 15 images
of some reference part data made available to us, with outliers removed.
First, we observe in Figure 2 that the distribution of intensities observed
in voxels has a bimodal shape, with the larger intensity peak presumably
corresponding to material regions and the lower intensity peak corresponding
to void regions. Next, in Figure 3, we present a scatterplot of the mean and
standard deviation of the intensity observed in each voxel from the same set
of data. We indeed observe higher variability of intensity associated with
intermediate values of the mean intensity. Indeed, we can infer from this
plot the following empirical model for the standard deviation o; (noise) in
the intensity as a function of its mean value I (which we may take as the
intensity value that should be observed, taking into account systematic effects
like photon starvation, but neglecting fluctuations due to spatial alighment
shifts, etc.):

oz 0<T<025
W5 (1-1), 0.75<I<1

For completeness, we also present in Figure 4 a histogram of the variance of
the intensity of a voxel from the same data set. While presenting an overall
sense of the level of noise, its precise details do not seem like an appropriate
basis from which to develop a model or algorithm since it pools together
statistics of voxels from very different regions (material, void, edges).

3 Toy Model

To aid with the development of our defect detection algorithms, we designed
a “toy model” that served a twofold purpose. Firstly, we had limited access to
X-ray images and CAD models because of the inherent sensitivity of sharing
information about actual manufacturing defects; a toy model provided imme-
diate and ample imagery to which we could apply our algorithms. Secondly,
we had concerns about developing our algorithms with actual X-ray images
because of the inherent complexity of the manufacturing defects, image re-
construction, etc.; a toy model provided the ability to model and introduce
particular defects, noise, etc. as appropriate for each stage of the algorithm’s
development. That is, this toy model could be used to explore the merits of a
defect detection algorithm apart from the question of what noise model, etc.
best fits the data. A defect detection algorithm could be tested on the toy
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Figure 2: Histogram of intensities observed, pooled over all voxels in 15
samples of a part provided to the working group
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Figure 3: Scatterplot of mean and standard deviation of the intensity ob-
served in a voxel. These statistics were taken voxel by voxel from 15 samples
of a part provided to the working group; each point on the plot corresponds
to a (mean, standard deviation) pair for one of these voxels.
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Figure 4: Histogram in the variance of the intensity in voxels, with statistics
for each voxel computed from 15 samples of a part provided to the working

group.

Figure 5: Toy model’s surface

model, feeding it the actual model for the image and noise, as a first check
of its potential. If the defect detection algorithm does not work well on the
toy model, then one may move on to other ideas without taking time to see
if the algorithm would work better under different models of the noise, etc.
This therefore helps separates the research into two subtasks: developing an
algorithm that works well when the statistics of the image and defects are
known, then developing a model for the image and defects that works for the
actual data under consideration.

We designed the toy model as a cube with a cylindrical hole entering and
exiting the cube at opposite, nonadjacent faces of the cube (Figures 5 and 6).
To incorporate acceptable manufacturing variations into the toy model, we
allowed the radius, entry point, and exit point of the cylindrical hole to vary



Figure 6: Cross section of voxel values in toy model before (left panel) and
after (right panel) imaging artifacts are introduced

within manufacturing tolerances. These tolerances were assumed to be on
the order of voxels, but we could exaggerate or depress them as desired.

To incorporate a particular manufacturing defect into our model, we in-
troduced voids with locations generated by a Poisson point process and whose
shape was generated by a short random walk. A more realistic variation of
the model could employ a random choice from a library of defect shapes.
The radius of the void was assumed to be about the order of a voxel, but we
could again exaggerate or depress the size of the void as desired.

To incorporate the reduction of voxel intensity due to photon fatlgue
which is known as shadowing, we adjusted the mean intensity I of a voxel X
by

where d()? ) was the shortest distance between voxel X and the edge of the
cube and [ was a parameter reflecting the rate of shadowing. We could
vary the degree of shadowing in accordance with the properties of the part
measured and the equipment measuring it, but we could not determine a
suitable choice for [ from the sample X-ray imagery.

To introduce noise from the imaging, we applied a normal model whose
standard deviation was multiplicative with respect to intensity for regions
of free space and solid material and additive with respect to intensity for
intermediate regions. This was motivated by the sample X-ray imagery,
where the standard deviation of the intensities appeared to be governed by



relationship

LLI(X), 0< I(X) <025
or(X) ={ 0.15, 0.25 < I(X) < 0.75 (1)
2 (1-1(%), 05 <I(X) <1

where I(X) is the mean intensity of the voxel under consideration (see Sec-
tion 2). To incorporate image reconstruction artifacts, we performed a
weighted average of the intensity of each voxel with the intensities of ad-
jacent and nearly adjacent voxels. We could not determine suitable weights
for averaging from the sample X-ray imagery. Noise was added to each voxel
according to the above prescription before and after introducing image re-
construction artifacts.

4 Geometric Approach

One natural way to check for defects is to develop a reference template for
a given part, indicating where the material and void regions should be, and
then checking the intensity profile of a given part against that template.
What complicates this approach is that defect-free parts will themselves have
acceptable variations, and simple changes in their orientation when imaged
will cause significant differences in their voxel representation of intensity.
Moreover, as discussed in Section 2, photon starvation effects and reconstruc-
tion artifacts imply that we cannot simply check whether material regions
have intensities near 1 and void regions have intensities near 0. Finally, noise
in the imaging and reconstruction will cause intensity fluctuations that we
don’t want to interpret as material defects.

Therefore, our geometric approach will adopt a statistical approach. Our
general strategy will be to first construct a fattened reference surface which
divides regions that should be material from regions that should be void,
then to check for defects of various types according to the region of interest.
We next provide some details on each of these two phases.

4.1 Construction of Reference Template Image

Figure 7 show the statistics of the intensity in a two-dimensional cross section
taken from a collection of images of a part of a certain type. In the left
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Figure 7: Mean (left panel) and standard deviation (right panel) of intensity
of several images of a given part

panel, the higher intensity red regions correspond to material, while the lower
intensity dark blue regions correspond to void. While any given part has a
sharp surface dividing these two regions, the ensemble of images of parts of
a given type have a rather broad light blue surface region. The reason for
the fattening of this dividing surface in the statistical ensemble of images is
variation between parts in different images, both due to actual variations in
the structure (which are within acceptable tolerance) and differences in how
the different parts are registered due to variations in their spatial orientations
and positions when imaged. We see that if we were to take a sharp reference
surface and demand that voxels inside that surface should have low intensity
and voxels outside that surface should have high intensity, we would be prone
to reject many parts as defective that are actually perfectly acceptable.
Therefore, we suggest constructing a reference template image as follows.
First, we identify an ideal reference surface dividing the material from void
regions in one of two ways. If we have a CAD model for the part’s design,
we can simply represent the ideal reference surface from those schematics.
If we are not given an ideal design, then we can take the ensemble of im-
ages of various instances of the parts and compute the mean voxel intensity
across those images (as in the left panel of Figure 7). We assume defects will
be washed out in this statistical averaging, so that this averaged image is a
reasonable representation of the intensity profile of an acceptable part. We
then identify an idealized reference surface through some surface-detection
algorithm, such as taking the surface as the collection of voxels with a given
intermediate intensity value, or looking for regions with a large gradient in
voxel intensity. In either case, the idealized reference surface is then dilated
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into a fattened surface; the appropriate thickness can be inferred from the
plot of mean intensity by identifying the width over which the voxel intensity
remains away from 0 and 1, or from the plot of the standard deviation by
taking the width of the region over which the standard deviation is substan-
tial. All voxels within this fattened surface are then taken as surface voxels
(S). We then label the remaining voxels as interior (I) or exterior (E) voxels
through a flood fill procedure beginning with voxels on either side of this
fattened reference surface.

4.2 Identification of Defects Given Reference Template

Once the reference template is obtained, we can look for defects of various
types. We propose here two methods for identifying voids in material regions,
but similar ideas could be developed to test for sand in regions that should
be void, or cracks emanating from the surface. Our methods each take into
account imaging artifacts and noise.

4.2.1 Test for Void Defect through Anomalously Low Intensities
in Material Regions

A simple idea for looking for a void in a region that should be filled with
material is to look for voxels with intensities that are too low. Were the voxel
intensities to be ideal representations of the image, then we could simply test
whether interior voxels have intensities close enough to 1. But for reasons
discussed previously in Section 2, such an approach would clearly produce
too many false positives because the intensity of an interior voxel could be
well below 1, without representing a defect, due to being in a photon-starved
region deep in the interior or due to noise fluctuations. To build a test with
more specificity, we supplement our geometric decomposition of the image
with:

e a reference intensity profile I ()2 ), representing the expected intensity
of each voxel X

e the standard deviation UI(X' ) of the intensity of each voxel X due to
imaging and reconstruction

We could obtain these functions in either an analytical or statistical way. The
analytical approach would be to devise an algorithm that would calculate,
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given the geometry of the material region, what intensity each voxel should
have based on photon starvation effects, and use this for T ()? ). The standard
deviation function 01()2 ) could be then inferred from a noise model such as
in Eq. (2). Alternatively, if we are given a collection of images of parts of a
given type, we can simply take these as a statistical ensemble and compute
the mean and standard deviation of each voxel, excluding outliers, as we did
in Section 2.

Once we have the functions I(X) and o;(X), we would flag a possible

X) i

defect at voxel X if its intensity /(X) in a given image satisfied:

— - —

I(X) < I(X) = cor(X),

where ¢ is some constant that would be chosen, probably through trial and
error. The idea is that we are suspicious of a voxel if its intensity is too many
standard deviations below the expected intensity. When we applied this
algorithm to a test problem, it flagged quite a few spurious defects, but many
of these could be discarded from consideration if we were to ignore suspicious
voxels that are isolated (have no neighbors that are also suspicious). The
motivation for such an approach is that a void should have some finite volume
and be likely to contaminate some contiguous set of voxels, so an isolated
voxel with anomalously low intensity is likely to be due to an imaging artifact
rather than a true defect in the material.

4.2.2 Test for Void Defect by Hypothesis Comparison

An alternative approach for testing for void defects in a material region is to
consider whether the intensity of a voxel in a given image is more compatible
with the hypothesis of material in that region or void in that region. This
would require us to obtain first a reference intensity function I(X) as in the
previous method, which would describe the intensity value we would expect if
the voxel actually corresponding to material, as it should. We would also need
a function I V()? ) that would describe the intensity value we would expect
at voxel X if it corresponded to a void. Whereas I (X ) could be obtained
by either an analytical or statistical approach, as described in the previous
method, the function [/ V()Z' ) must be obtained from some analytical basis
since we cannot expect to have a collection of parts all of which have a void
at a given location. One way that the function [/ V()Z ) might be constructed
is to take a weighted average of 0 and the reference intensity I ()? ), to model
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reconstruction artifacts that would give some intensity to a voxel in a void
due to smoothing from nearby regions. More sophisticated models for IV ()Z' )
might be developed from better understanding of the imaging process.

Once the functions I(X) and IV (X) are obtained, we would flag a void
defect at an intenior voxel when its intensity at a given part satisfies:

1) < IV(X');I(X')’

that is the intensity is closer to what would be expected under the hypothesis
of a void than under the hypothesis that the voxel corresponds to a material
region. We are assuming here that the noise levels under these two competing
hypotheses are comparable, so that the midpoint of their expected intensities
provides a reasonable discrimination point. To do better, we would have to
develop a noise model under the hypothesis of a void at voxel X , for which
we had no particularly promising ideas. As with the previous method, we
would suggest discarding from consideration isolatd flagged voxels.

5 Basis Expansion Approach

An approach different from the geometric one above is to expand the volu-
metric data in terms of one or more bases, such as wavelets, Fourier modes,
or curvelets. Representing the data in a different domain may facilitate the
detection of defects, since defects might be more easily distinguished from
normal features in a suitable representation. We will focus our discussion on
curvelets, since they seem to be the most promising avenue.

5.1 Curvelets

Just a decade old, curvelets are a basis of functions well adapted for rep-
resenting images defined by smooth curves, perhaps with some singularities
like intersections [2]. The edges produced by simple images can create some
challenges for Fourier and even more classical wavelet bases, since a simple
edge may project substantially onto a large set of modes. The problem is the
anisotropy implicit in edges — very thin in one direction with more gradual
variation in the other(s), and this anisotropy need not line up with the axes
on which the Fourier or wavelet modes are based. Curvelets were designed to
be much better adapted in parsimoniously representing images with simple
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curves in arbitrary directions, so in particular objects such as cartoons and
text can be well represented using few curvelets. We remark that though its
name suggests a two-dimensional representation, the use of curvelets have
been extended to higher dimensions (in particular to dealing with curves and
surfaces in three dimensions) [19]. What characterizes 3D curvelets is that
they are short in at least one dimension and potentially long in the others
(Figure 8). That is, they can be long, skinny tubes, curved surfaces, or
tightly coiled balls.

Most normal features of the manufactured parts should be surfaces, and
so images of normal parts should, in the curvelet domain, concentrate their
amplitudes on curvelets that represent surfaces. By contrast, voids would
be best represented by curvelets that are small in all three dimensions, i.e.,
small balls or ellipsoids (or other localized shapes). As a result, whenever
the curvelet expansion has a particularly large amplitude of coefficients cor-
responding to curvelets that are small in all dimensions, these images could
be flagged as suspected defects. Inverting the curvelet transform from the
projection onto these modes could help identify the location of the defect,
though this may not be necessary if the purpose of image processing is to
simply flag a suspicious image rather than point to the particular area of
suspicion. Determining the appropriate threshold amplitudes for flagging a
defect would require experimentation.

While this procedure may work well for void and wormwhole defects,
which are localized in all three dimensions, other defects such as cracks may
be more difficult to distinguish in the curvelet domain because they are spa-
tially extended in one dimension but not in the other two. Curvelets should
be able to distinguish such features from normal smooth surfaces, but con-
fusion could arise with thin “necks” in the metal of a part, which is likely to
project onto simliar curvelet modes. The discrimination here may require a
determination of the normal mode amplitudes and phases for the curvelets
representing images of acceptable parts, and then checking when the projec-
tion of an image onto these modes deviates more than an acceptable threshold
(due to part-to-part variation) from the “normal values.” Of course trying
to detect deviations of mode amplitudes and phases from certain “normal
values” will be more challenging than simply checking whether certain mode
amplitudes exceed a certain low threshold, so crack detection by curvelets
could be expected to be subtle.

Expanding data in the 3D curvelet domain appears to be computationally
feasible given the time constraints, as shown in Table 1.
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Figure 8: Two 3D curvelets, one large in scale and one small [19].
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Table 1: Computation speed of 3D curvelet transform on a supercomputer
in 2005 (from Ying et al. [19]).

Grid size Number of Processors Time
2563 4 47 sec
5123 32 50 sec
10243 128 94 sec

5.2 Frames and Sparse Representations

Another potentially fruitful approach is to use frames, or sets of vectors that
span the space but may be linearly independent or dependent. A frame could
consist of two orthogonal bases, such as wavelets and curvelets; their union is
an over-abundance of basis vectors, and therefore no longer a basis. However,
combining two bases could be useful because images may be well represented
by a combination of a few basis elements from different bases. (Think of an
image of a face: curvelets better represent some features, such as contours
of the face, whereas more classical wavelets better represent other features,
such as glasses or pupils..)

Consider a frame consisting of 3D wavelets and 3D curvelets, for example.
To expand the volumetric data in terms of this frame is highly underdeter-
mined: there are many different ways to represent the data in terms of these
curvelets and wavelets. However, it may be possible to represent the data in
terms of very few curvelets and wavelets—a so-called “sparse representation”.

The past decade has seen a flourishing of advances in techniques for find-
ing sparse solutions (and in understanding the probability of finding them,
which requires sophisticated mathematics). Techniques in convex program-
ming, such as basis pursuit, can search for sparse representations in a frame;
one useful implementation can be found in Grant and Boyd [4]. For a popular
science introduction to compressive sensing, see Ellenberg [3]. An extensive
list of resources on compressive sensing is maintained by a research group
at Rice University [5], while a thorough introduction to compressive sensing
can be found in [1].

Suppose there is a basis well suited for the features of an object but not for
the defects (perhaps 3D curvelets), while another basis is well suited for the
defects but not the features (perhaps 3D wavelets). Determining whether two
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such bases exist in a practical sense would require experimentation. Suppos-
ing they have been established, then techniques in compressive sensing could
seek a sparse representation of the data (by minimizing the fy-norm, for ex-
ample). Then in the sparse representation, the hope is that the defects would
concentrate their amplitudes in one basis, while features would concentrate
their amplitudes in the other basis—hence facilitating detection of defects.
Whether finding the sparse representation of the frame is computationally
feasible in the minute-scale time constraint is unclear, though it appears to be
in the realm of feasibility. Ideas along these lines have been applied recently
to defect detection in textures [8, 9, 13, 16], fabrics [6, 10, 11, 14, 15, 18] and
chips [7, 17].

6 Topological Approach

A qualitatively different approach, which we did not pursue in the workshop,
is to attempt to explore whether the image is topologically consistent with
the ideal part. This approach would be best suited for detecting material
defects (sand) in regions that should be void. From a reference template, one
would sketch out a branching path of line segments that would “explore” the
void regions in the part. On a given image, one would attempt to draw a
similar branching path that would only encounter voxels with sufficiently low
intensity (which would be assumed to correspond to a void region.) Because
of part-to-part variation and registration issues, we wouldn’t insist that the
branching path also fits in each image perfectly; we would only ask that it
fit topologically. That is, we don’t prescribe the lengths of the branching
segments, but just whether it is possible to construct a tree with the same
kind of branchings, with each branch having some minimal length. A channel
obstructed by sand would presumably fail such a test. This does leave open
the question of how to check that a given voxel representation, especially
in three dimensions, is consistent with a certain branching topology of void
space. Perhaps one could start with the reference branching path, including
lengths, and if that path hit high intensity voxels (that are probably not an
actual void region), then iteratively adjust the branching segment lengths to
see if the reference branching tree can be shuffled into purely low-intensity
voxels without changing or losing any of the fundamental turns or branches.
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7 Conclusions and Directions for Future Work

The workshop has provided hopefully some new perspectives on methods
for automatically detecting defects in parts from scanned three-dimensional
images. Part-to-part variations and noise in the imaging and reconstruction
process seem to suggest that a statistically-based approach is necessary. To
this end, we have conducted some preliminary statistical analysis of some
sample images provided to us to get a sense of the noisiness of the intensities
in a set of images of various instances of a given part. We also developed a
mathematical toy model that could be used for testing and exploring algo-
rithmic approaches in a highly controlled context, before subjecting them to
the large number of unknown variables characteristic of real data. We have
suggested three methodologies that seem viable for further exploration: 1) a
geometric approach which decomposes the image into surface, interior, and
exterior regions, and checks that each voxel behaves as it should within its
region, 2) a basis expansion approach in which we check whether the image
has a nontrivial projection onto modes that are associated to defects, and 3)
a topological approach for detecting sand occlusions of regions that should
be void by attempting to fit a branching path through purely low-intensity
voxels. The week of the workshop did not permit us to test any of these
ideas in great depth, but we would suggest beginning with tests on very sim-
ple examples, such as our mathematical toy model, to see the fundamental
strengths and weaknesses of an approach before confounding the challenge
with the extra unpredicatibility of real data. Of course any workable algo-
rithm must work well with real data, but the use of the mathematical model
as an intermediate step may suggest ways to refine or adjust an approach
that might otherwise be discarded when it is simply tried on data and found
not to work as designed.

We close by mentioning a couple of ideas that emerged at the workshop
but were not developed with any details:

e The defect detection algorithms suggested here probably are exces-
sively aggressive, and can be expected only to suggest suspicious vox-
els. Likely, some of these suspicious candidates should be automatically
pruned from consideration if, for example, an insufficient number of the
neighboring voxels are also flagged as suspicious.

e The defects are modeled in Section 3 as localized void regions. A model
for crack defects could be constructed by selecting a random material
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location as a crack initiation site, from which the crack propagates
according to a random walk until it terminates when it reaches a voxel
corresponding to a material edge.
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