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Executive Summary

PETN is a high explosive, sometimes stored for periods of up to many
years, in powdered form. In storage, the explosive particles change size
and shape owing to sublimation, condensation and surface di�usion.
AWE measurements are available on the changing particle size distri-
bution (PSD), and the speci�c surface area (SSA) of the powder, taken
from experiments on accelerated ageing. But a mathematical model
of the ageing process is wanted in order to interpret the processes at
work. Various modelling issues and unusual features of the measure-
ment data were discussed. Four models of important processes were
developed, and are reported here. Model (i) addresses the fundamental
physics associated with the transport of mass by sublimation, di�usion
and condensation. Model (ii) uses chemical kinetics to develop a system
of ordinary di�erential equations (ODEs) for the time-evolution of the
frequencies of particle sizes. Model (iii) extends Model (ii) to a contin-
uum particle size distribution. Lastly, Model (iv) considers the growth
of particles as described by Cahn-Hilliard equations for the inter-particle
transport of matter in Ostwald Ripening. Models (i) and (iv) include
the complex geometry and thermodynamics of the problem. By con-
trast, Models (ii) and (iii) focus on the time evolution of the PSD, but
they are more di�cult to associate with controllable variables, such as
ambient temperature. Our discussions of models (ii) and (iii) suggest we
can choose mass-transfer rate constants that reproduce the kind of ob-
served evolution to a bimodal PSD. But more investigation is needed to
determine how the rate constants may be associated with the particles'
geometry and the thermodynamics of the mass transport processes.
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1 Introduction

1.1 Background and Scope

(1.1.1) Explosives powders (e.g. PETN) are prepared at 100 degrees Celsius and
undergo early changes in particle size distribution (PSD) and speci�c sur-
face area (SSA), followed by longer time-scale changes.

(1.1.2) By understanding how these particles behave in situ and interact with
neighbours we aim to make a predictive model of the PSD, able to explain
the bi-modal (multi-modal) distribution observed in the left-hand plot of
Figure 1.

(1.1.3) Experimental and high resolution measurements indicate complex pro-
cesses, in particular a sharp initial decrease followed by a slower decrease
in the SSA of the powder shown in the right-hand plot of Figure 1.

(1.1.4) The modelling aims to predict the in�uences of material properties and
processing temperature on the possible long-term size distributions and
the decrease observed in the speci�c surface area of the powder.

1.2 Problem Statement

(1.2.1) This sub-section is the problem statement, as put by AWE Ltd. at the
start of the meeting:

Problem Prepared By: Janella Mansell, Rod Drake and John P. Curtis,
AWE Aldermaston, Reading, Berkshire RG7 4PR.

A Model for the Reduction of Speci�c
Surface Area of Powders with Age

High surface area powders are required in a number of technology areas.
For example, the e�ciency of catalysts is intimately linked to the surface
area of the powder. In our context we are interested in explosives that
are in the form of a powder. High surface area, small diameter powders
tend to have a high Gibbs surface energy and tend to coarsen to reduce it.
The main mechanisms by which powders may change their surface area
are believed to be:
1. Evaporation-condensation, in which molecules detach from a particle
surface, di�use through the gas phase, and then condense on the surface
of a di�erent particle;
2. surface di�usion, in which the molecule undergoes long-term di�usion
on (solid) particle surfaces without detaching into the gas phase.
To date the mathematical modelling of the coarsening process, sometimes
referred to as Ostwald Ripening, has usually made the assumptions that
the explosives comprise a collection of detached spherical particles of dif-
fering radii and that mass transfer occurs via the Gibbs-Thompson e�ect.
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While the assumption of spherical shapes is a reasonable starting point,
it is known that crystal growth is highly dependent on local surface cur-
vature. It may be that postulation of a distribution of shapes might be a
better way to improve the mathematical description of the process. In pre-
vious work correction factors are employed to account for particle shapes,
surface roughness and the di�usion process. The �rst highly transient
phase of the coarsening process in particular is still not well understood.
The �rst main aim of the proposed study is to investigate the physical
modelling of the atomic-level mass-transfer processes causing coarsening
of solid powders, in particular addressing:
A: how to relax the assumption of separate particles, instead allowing con-
tact between them; and
B: under these circumstances how to model evaporation-condensation and
surface di�usion.
The next main aim is to model the evolution of the statistical distribution
of particles, probably �rst assuming spherical particles and then relaxing
that assumption. If possible it would be good to establish a �exible dis-
tribution model which would allow di�erent models of the physical mech-
anisms to be tested.
AWE will supply a set of references on the physics and chemistry of the
atomic mass-transfer processes, and some data on particle distributions
and explosive compositions. It is believed that there should be su�cient
scope here to engage the academics over the week and to lead to some
fruitful academic research. AWE experts will attend full-time to assist
with obtaining information and to decide on priorities, etc.

(1.2.2) Note: One of the AWE slides, presented at the start of ESGI-85, ex-
plained the Gibbs-Thompson e�ect of evaporation from a spherical parti-
cle, the di�usion of the vapour through the inter-particle gas phase and the
condensation of vapour onto another spherical particle. (The assumption
of spherical particles is contentious.) Let pr be the equilibrium pressure
of a particle of radius r, let p∞ be the equilibrium pressure of the bulk,
let V be the volume of molecules in the solid phase, σ the surface energy
density, T the absolute temperature and k Boltzman's constant. Then an
equation for the Gibbs-Thompson e�ect is said to be

kT ln

(
pr

p∞

)
=

2σV

r
. (1)

Another slide contains expressions that claim to model evaporation and
condensation rates as follows. The evaporation mass loss (per unit surface
area) during time δt (for a spherical particle) is

δm− = p∞(T ) exp

(
C

TR

) √
M

2πRT
δt, (2)

where C is a constant which includes the radius of curvature of the particle
surface, M is the molecular mass, R is the gas constant, and P∞(T ) is the
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vapour pressure of a large particle. Also the condensation mass gain (per
unit area) during time δt is:

δm+ = p

√
M

2πRT
δt, (3)

where p is the background partial pressure.

2 Model (i): Fundamental Considerations

2.1 Fundamentals at Macroscopic Scale

(2.1.1) Let φ be the volume fraction of PETN (pentaerythritol tetranitrate) vapour,
ρc the density of condensate, ρv the density of vapour, D the macroscopic
mass-transport di�usivity of the vapour and T the absolute temperature.
Then mass conservation of PETN implies

∂

∂t
((1− φ)ρc + φρv) =

∂

∂x

(
D

∂ρv

∂x

)
, (4)

where φρv is relatively small. Heat conservation implies

∂

∂t
((1− φ)ccρcT + φρv(cpT + L)) =

∂

∂x

(
k
∂T

∂x
+ (cpT + L)D

∂ρv

∂x

)
, (5)

where cc and cp are the speci�c heat capacities of the solid and vapour,
L is the latent heat of vaporisation from solid to vapour, and k is the
thermal conductivity. Note that the second and fourth groups of terms in
(5) are relatively small. (Equations (4,5) encompass the di�usion of mass
and heat, as described by Crank [10].)

(2.1.2) Equations (4, 5) imply the following statement of the
Heat Equation.:

ρccc
∂

∂t
((1− φ)T ) =

∂

∂x

(
k
∂T

∂x

)
, (6)

with an associated time-scale of ≤ 1 hour. Also we have the
Mass Equation.:

− ρc
∂φ

∂t
=

∂

∂x

(
D

∂ρv

∂x

)
, (7)

where ρv = ρv(T ) changes on a time scale of 6×108 seconds (20 years), and
so we may take φ to be a constant and model the temperature variation
in equation (6) as follows:

(1− φ)ρccc
∂T

∂t
=

∂

∂x

(
k
∂T

∂x

)
. (8)

3



ESGI

2.2 Fundamentals at Microscopic Scale

(2.2.1) The time scale for microscopic particle change due to di�usion is
O(ρcl

2
m/ρvD). Here we take ρc = 1.8 × 103 kg m−3, length-scale lm =

10−5 m, ρv = 1.3 × 10−6 kg m−3 based on a saturation pressure of 1.34 ×
10−2Pa at T = 350 K, and where D = 10−5 m2s−1. Hence the di�usion
time scale is found to be O(109× 105× 10−10)m2/m2 s−1 = 104 seconds (3
hours).

(2.2.2) In the microscopic problem, with T �xed for the long time scales of inter-
est, the vapour evaporating from a solid particle has a local vapour density
whose functional dependence is of the form

ρv = ρs(φ, k, T, V ), (9)

in which the vapour �ux from the surface is V = Dv∂ρv/∂n, and n is
the outward normal distance from the particle's surface, and Dv is the
di�usivity of the vapour. Between particles the vapour density di�uses
according to the di�usion equation:

∂ρv

∂t
= Dv∇2ρv, (10)

where ∇2 is the three-dimensional Laplacian.

(2.2.3) The solutions of equation (10) tend to an equilibrium con�guration, that
depends on T , over a macroscopic time scale. However, this mechanism
also suggests that a decrease of temperature during an experiment would
reverse the downward trend of the SSA.

(2.2.4) N.B. There is an issue over whether the typical shape (if such a thing
exists) is uniquely matched to each temperature T . To get (10) to give
a temperature-dependent �nal particle distribution, the local equilibrium
saturation vapour pressure must be given. e.g. by some law of the form (9).
Without detailed knowledge of such dependency, we're not in a position
to predict the ultimate SSA (speci�c surface area).

2.3 Further Considerations of Time Scales

(2.3.1) For the length scale of the powder particles (and their separation distance),
it may be that the mass di�usion would be about 70 (give or take a factor
of three or more) times as fast as the porous �ow.

(2.3.2) Although temperature di�usion acts on the right time scale for the fast
change, it doesn't really explain the fast change of particle size. We
might postulate the existence of much �ner particles, or a much �ner
structure, which are/is eliminated by the mechanism above (that a shorter
length scale leads to a faster time to act).

4



ESGI

(2.3.3) In changing the temperature from 350K to 375K, the saturation pressure
increases by a factor of about 20. Unfortunately, the experimental results
don't appear to show any corresponding reduction of time scale.

(2.3.4) Looking at AWE's two sets of graphs ((1) of size distributions and (2)
of SSAs � See Figure 1) we have the following. In (1), the �rst bump
of the �bi-modal� distribution, given the sizes involved, looks as though
it contains less than 1% of the mass of the crystals (perhaps more like
0.15%). (There are also suspicions of lower humps to the right � making
the distribution at least tri-modal � which could contain more mass, given
the relevant length scales, than the more pronounced left-hand bump.)
In the �rst 30 minutes, (1) shows a shift to the right of the main hump,
corresponding to a doubling of the particle size. Graph (2) of Figure 1
only indicates a reduction of about 20% (not 50%) in SSA during that
period.

2.4 Sublimation at Sub-Particle Scale

(2.4.1) Consider a half-space x > 0 sublimating happily and steadily over a time
scale of days. An isothermal model might be:

u
dp

dx
= D

d2p

dx2
, ρu

du

dx
= −dp

dx
, p = (RT )ρ = constant× ρ, (11)

where D = di�usion coe�cient of PETN in air at absolute temperature
T . Also we have two boundary conditions at x = 0 as follows: p = ps

and ρu = −D̃ dp
dx

(from AWE book [12] or [14]), and a third condition at
x = ∞ where p = p∞ < ps.

(2.4.2) Setting RT = D = 1 for simplicity, 1
2
u2 + log ρ = 1

2
u0

2 + log ρ0.
So

dp

dx
− dp

dx
(0) = −

∫ ρ

ρ0

√
u0

2 + 2 log

(
ρ0

ρ′

)
dρ′, (12)

where p = ρ and ρ0 = ps. Hence we have an o.d.e. for ρ = p of the form:

dp

dx
= F (p, u0, ps), (13)

with p = ps at x = 0, and p = p∞ at x = ∞ as boundary conditions which
should give sublimation velocity u0 as a function of ps.

(2.4.3) If this is OK maybe we could �t a 10-hour timescale when we put ∂p
∂t

into the mass conservation equation and a half-hour timescale when we
consider heat conduction?

5



ESGI

3 Model (ii) Chemical Kinetics ODEs

3.1 Model Equations

(3.1.1) We consider a closed container of �xed volume containing particles of
various sizes. We de�ne ck(t) to be the frequency of those particles that
contain k atoms (or have volume k), at time t, where t ≥ 0. Therefore
c1(t) is the frequency of monomers, i.e. the vapour.

(3.1.2) Particles can only change size by exchanging monomers via the vapour.
Condensation and evaporation mass exchanges are accounted for in the
following reaction equations:

(k)⊕ (1) → (k + 1) gain at rate γk ck c1 (14)

(k) → (k − 1)⊕ (1) loss at rate λk ck, (15)

where for a particle of volume k its rate of volume decrease by evaporation
is at a rate of loss λk, and its volume increase by condensation from the
vapour is at a rate of gain γk. Note that both λk ≥ 0 and γk ≥ 0.

(3.1.3) The following are mean-�eld equations for a homogeneous mix of particles:

dck

dt
= γk−1ck−1c1 − γkckc1 + λk+1ck+1 − λkck for k = 2, ..., N (16)

dc1

dt
= −2γ1c

2
1 − c1

N−1∑
k=2

γkck + 2λ2c2 +
N∑

k=3

λkck. (17)

3.2 Discussion of Model Equations

(3.2.1) A particle of size k = 1 is referred to as a monomer, and such particles
do not themselves evaporate, so λ1 is absent from equations (16, 17).
Equation (16) follows from considering the four ways that particles of size
k can be made or lost. The terms in turn correspond to: a gain due to
a k − 1 combining with a monomer; a loss when a k loses a monomer by
precipitation; the gain of a k because a k + 1 evaporates a monomer; the
loss of a k by evaporation. In (17) the terms on the RHS correspond to the
four ways one gains or loses monomers: First, when a pair of monomers
combine to form a dimer, there is a loss of two monomers. Secondly each
k ≥ 2 particle can combine with a monomer. Thirdly, evaporation of one
dimer leads to the making of two monomers. Fourthly, any k ≥ 3 particle
can evaporate to make exactly one monomer.

(3.2.2) The equation system (16, 17) is truncated at size k = N ≥ 3. We arti�-
cially stop growth due to condensation from size N to N + 1, by setting
γN = 0, and this is already incorporated into the upper limit of the �rst
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summation in equation (17). Also larger particles are unavailable to evap-
orate down to size N , so we set λN+1 = 0. Hence the model has a set of
2N − 2 constants, all ≥ 0: namely λ2, ..., λN , γ1, ...., γN−1.

(3.2.3) A property of equations (16, 17) is conservation of total volume of material:

d

dt

N∑
k=1

k ck = 0, (18)

and therefore a �xed total volume, which we can write as a total mass M
divided by a constant mean density %:

N∑
k=1

k ck =
M

%
. (19)

(3.2.4) Forward problem: Given the rates γk and λk we can integrate the
rate equations (16, 17) forward in time, until either an equilibrium state
is reached or not. If the resulting particle size distribution is similar to
the observed data, then the problem is `solved'.

(3.2.5) For most choices of γk and λk, the equilibrium state consists of a set of
special values ck = c∗k which are independent of time. We expect c∗k to
have a monotonically decreasing dependence on k. Can we �nd a set of
rate constants γk and λk which re-produce a bi-modal (or multi-modal)
size distribution in the equilibrium state {c∗k}?

(3.2.6) Inverse problem: For a given observed equilibrium size distribution,
{c∗k}, we set all the derivatives equal to zero and solve (16, 17) for that set
of rates, γk and λk, which produce the observed {c∗k} equilibrium state,
and the problem is again `solved'. However, how should we choose the
constants?

(3.2.7) If {c∗k} is a known equilibrium state, then equations (16, 17) have zero
left-hand sides, and can be treated as a set of algebraic conditions to
determine the rates γk and λk. As such, these are LINEAR equations
... but they are under-determined. The under-determination comes from
the fact that we have only N independent equations, consisting of just
N − 1 independent conditions from eqs (16, 17) and one inhomogeneous
condition from (19). And yet we have 2N − 2 unknown rate constants to
�nd, and, since N ≥ 3, in general N < 2N−2. So we have more unknowns
than equations. In principle we can deal with this under-determinedness
via Tikhonov regularisation... ... or cheat as follows. Assume γk are
known, or better equal to one unknown value. Then we are left with
N equations for N unknowns (e.g. N − 1 values for λk plus 1 shared
unknown value for all the γk). We must also be mindful of equation (19)
when choosing the set of values c∗k.

7
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(3.2.8) Can we �nd (positive) rates which give a bimodal equilibrium PSD? We
constructed one example computed with N = 100 started with initially
uni-modal PSD data. See Figure 2. Solving the forward problem, the
PSD evolved over time to a bimodal distribution. The computed long-
time distribution sits on top of the independently obtained equilibrium
pro�le, as shown in Figure 2.

(3.2.9) Results were obtained for the inverse problem, to obtain λk, in which we
put γk = 1, (i.e. the condensation rates were assumed to have no depen-
dence on particle size � further thought will be needed to determine if
this is realistic). These rates λk, obtained from the equilibrium state, are
shown in Figure 3. With this input we then solved the forward problem
with these inferred rates. With the rates obtained from the inverse prob-
lem, do the forward dynamics work to produce a bimodal distribution?
We had some success in answering this.

(3.2.10) We also reported on the associated time-evolution of the Speci�c Surface
Area, SSA, de�ned by

SSA(t) =
N∑

k=1

αk
2
3 ck(t), (20)

where α is a dimensionless shape coe�cient. Note that α is independent
of k when the particles are dispersed and all share the same shape. It is
for spheres that α takes its smallest value: α = (4π)(4π/3)−2/3 = 4.84; for
cubes α = 6. The value of α is larger for the other Platonic polyhedra,
up to α = 7.21 for regular tetrahedra; still higher values of α occur for
stellated or highly crenellated shapes.

(3.2.11) It was found there is a sharp decrease in SSA(t) over a short initial pe-
riod, followed by a slower decline (to an equilibrium value), similar to the
measured behaviour reported in the problem presented. See the example
shown in Figure 4, and compare with Figure 1 (right).

(3.2.12) In the equilibrium state (e.g. within a closed environment after a long
time) the left-hand sides of equations (16, 17) are zero but, as in the real
physical system, the equilibrium is dynamic in that there is a continual
exchange of mass between the particles mediated by the monomers of
frequency c1.

(3.2.13) Equilibrium Uniqueness: Some thoughts on the uniqueness of the
equilibrium state {c∗k} are as follows. If the rates λk and γk are all known,
then we can express the unknowns c∗2, ..., c

∗
N from the N independent equa-

tions (16, 19) to obtain one N th degree polynomial condition on c∗1, which
we write as PN(c∗1) = 0. Although there are N solutions, evidence from
N = 2, 3, 4 suggests that we can use Descartes' rule of signs on PN , to
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show that there is just one real positive root, and the polynomial guar-
antees the root is (sensibly) such that c∗1 : 0 < c∗k < M/%. (All the other
roots are unphysical in that they are negative or complex.) For the rest of
the solution set, each c∗k equals a positive constant times (c∗1)

k. So there
is just one positive value of c∗k for k = 2, ..., N . We conclude that the only
physically possible equilibrium state may well be unique.

(3.2.14) A particle-size-dependent evaporation loss rate might be modelled by

λk = k([k − 60]2 + 1), γk−1 = 100, k = 2, . . . ,M, γM = 0. (21)

4 Model (iii): Continuum Size Distribution Mod-

elling

4.1 Discussion of Model Equations

(4.1.1) In practical problems, we are concerned with mass transfer between very
large particles, where k ≈ 104 or greater [21]. (If the dynamical system
(16) and (18) were composed of 10,000 variables then it would be too big
to treat computationally in practice.) Hence, it is desirable to develop a
continuum analogue of the discrete system of di�erential equations given
by (16) and (18) in the previous Model (ii).

(4.1.2) One way of doing this is to assume that k varies naturally on a scale of
ε−1, so that γk, λk and ck(t) are well approximated by smooth functions
of a rescaled size variable, ξ ∼ ε k.

(4.1.3) Noting that we may need to rescale our variables, we make the ansätzë

that

γk = γ̂ γ(ξ), k = 2, 3, . . . (22)

λk = λ̂ λ(ξ), k = 2, 3, . . . (23)

ck(t) = ĉ c(ξ, τ), k = 2, 3, . . . (24)

c1(t) = m̂ m(τ), (25)

where ξ = (k − 2) ε; τ = t̂−1 t; and γ̂, λ̂, ĉ and m̂ are all scaling factors
chosen so that γ(ξ), λ(ξ), c(ξ, t) and m(t) are all O(1) functions. Note
that λ̂ and γ̂ should be chosen based on the expressions used for λk and
γk, but that t̂, ĉ and m̂ may depend on ε, λ̂, γ̂ and the other parameters
in the model.

(4.1.4) In the following the word `concentration' is more appropriate than `fre-
quency' as used in Model (ii) above. In this new model, the monomer
concentration, m(t), is treated separately from the concentration of larger
particles, and ξ is de�ned so that ξ = 0 corresponds to k = 2 (the smallest
particles that are not monomers).

9
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(4.1.5) First, applying the Euler-Maclaurin summation formula means that (19)
becomes

m̂ %

M
m(τ) +

ĉ %

ε2 M

∫ ∞

0

ξ c(ξ, τ) dξ +O
(

ĉ %

ε M

)
= 1.

Since most of the mass will be stored in the large particles, it follows that
an appropriate nondimensionalisation for concentration is ĉ = ε2 M

%
.

(4.1.6) To obtain a continuum model, we substitute equations (22) to (25) into
(16), and use Taylor series to approximate ck±1 in terms of c(ξ, t) and so
on. Assuming that a regular perturbation expansion is valid everywhere,
we �nd that (16) becomes

∂c

∂τ
= ε λ̂ t̂

∂

∂ξ

[
λ(ξ) c(ξ, τ)− γ̂ m̂

λ̂
m(τ) c(ξ, τ) γ(ξ)

]
+

ε2 λ̂ t̂

2

∂2

∂ ξ2

[
λ(ξ) c(ξ, τ) +

γ̂ m̂

λ̂
m(τ) c(ξ, τ) γ(ξ)

]
+ . . .

It follows that the time nondimensionalisation needs to be chosen so that
t̂ = 1

ε λ̂
and the monomer nondimensionalisation must chosen so that m̂ =

λ̂
γ̂
. Hence,

∂c

∂τ
+

∂

∂ξ

[
(γ(ξ) m(t)− λ(ξ)) c(ξ, τ)

]
− ε

∂2

∂ ξ2

[
(γ(ξ) m(t)− λ(ξ)) c(ξ, τ)

]
= O

(
ε2

)
. (26)

(4.1.7) At leading order in ε, we see that c(ξ, τ) satis�es an advection equation,
where the `velocity' (of transport) is given by γ m − λ. Consistent with
physical expectations, we �nd that the particles tend to grow if there is
su�cient monomer to make γ m− λ positive, while the particles shrink if
γ m− λ is negative.

(4.1.8) In order to obtain an equation for m(t) and a boundary condition for (26),
we need to consider the behaviour of small-sized particles. Importantly,
there will be a signi�cant di�erence between the case where m̂ ∼ ĉ and
the case where m̂ � ĉ. In the latter case, we expect to �nd a system
of discrete equations that need to be solved in the boundary layer region
where k = O(1) and ξ = O(ε). We did not analyse this situation during
the study group; instead we focus on the simpler case, m̂ = ĉ.

(4.1.9) In this case, substituting (22) to (25) into (16) for k = 2 yields the result

m(t) = c(0, t) +O(ε).

10
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(4.1.10) Moreover, substituting into (17) and applying Euler-Maclaurin summa-
tion, we �nd that

dm

dτ
= ε−2

∫ ∞

0

(
λ(ξ)− γ(ξ) m(τ)

)
c(ξ, τ) dξ +O

(
ε−1

)
.

Hence

c(0, τ) ≈ m(τ) =

∫∞
0

λ(ξ) c(ξ, τ) dξ∫∞
0

γ(ξ) c(ξ, τ) dξ
+O(ε). (27)

(4.1.11) The presence of the di�usive term in (26) means that we also need bound-
ary conditions as ξ → ∞. It seems appropriate to choose c(ξ, τ) → 0 as
ξ → ∞, because we do not expect to lose mass to particles of increasing
size.

(4.1.12) In future work it would be a good idea to investigate carefully the case
where m̂ � ĉ; that is, where the number density of monomers is much
greater than the number density of larger particles. Intuitively, this seems
to be a realistic parameter regime, but it would require careful analysis
because of the boundary layer near ξ = 0.

4.2 Analysis of Continuum Equations

(4.2.1) This continuum model de�ned by (26) and (27) has dynamics which are
surprisingly rich. As noted before, ignoring the O(ε) terms in (26) yields
an advection equation that has characteristic curves, in the (ξ, τ) plane,
given by

dξ

dτ
= γ(ξ) m(τ)− λ(ξ). (28)

If [γ m−λ] > 0, then particle-growth dominates and the mass is advected
(in ξ space) from smaller towards larger particles.

(4.2.2) At equilibrium there are two possibilities for each value of ξ:

γ(ξ) m− λ(ξ) = 0, or c(ξ) = 0. (29)

For given functions γ(x) and λ(x), and given m, we �nd that all of the
mass accumulates at the values of ξ where both γ(ξ) m − λ(ξ) = 0 and
γ′(ξ) m−λ′(ξ) < 0. However, these conditions are problematic, because of
the condition that c(0) = m. It is only possible to have mass accumulating
at a positive value of ξ, if m (and hence c(0)) is nonzero, but this is only
possible in a very limited range of situations.

(4.2.3) This problem can be regularised by incorporating the small di�usion term
in (26). In theory, this will enable us to �nd reasonable equilibrium solu-
tions, but this analysis still needs to be done. It may also be necessary to
perform a detailed analysis of the behaviour of the solution when k = O(1),
in order to �nd the equilibrium concentrations of the smaller species.

11
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(4.2.4) Interestingly, the structure of the hyperbolic advection equation (obtained
from ignoring the di�usion terms in (26)) suggests a way in which we can
obtain a bimodal particle size distribution. As long as there are multiple
points were γ(ξ) m−λ(ξ) = 0 and γ′(ξ) m−λ′(ξ) < 0, we expect there to
be multiple modes in our �nal solution. If, for example, γ(ξ) is constant,
but λ(ξ) goes up, down, and then up, it is possible for mass to accumulate
at more than one particle size.

5 Model (iv): Cahn-Hilliard Modelling

5.1 Ostwald Ripening

(5.1.1) The ratio of surface area to volume is smaller for larger spheres, as can be
easily seen for a sphere of radius r, where the ratio is 3r−1. On the other
hand, it is known that the molecules on the surface of particles are less
stable than the ones inside, which implies that larger spherical powders
have a higher proportion of stable molecules. Thus larger-particle powders
are energetically favourable, as they consist mostly of stable molecules
with lower energy. As a result, the molecules on smaller particles prefer
to move onto larger ones to reduce the energy of the whole system. This
causes the growth of larger particles at the expense of smaller ones � a
phenomenon known as Ostwald Ripening. An everyday example is the
precipitation of drops from clouds [25].

(5.1.2) When a binary system goes through a certain reaction, the minority com-
ponent condenses or di�uses onto larger particles. The particles on average
grow in radius R(t) according to

R(t)3 −R(0)3 = Kt, (30)

where the constant K depends on the system state variables and parame-
ters, and t is the time variable [31]. This is the main result of LSW theory
(Lifshitz, Slyozov, and Wagner) [20], [29].

5.2 Ripening with Cahn-Hilliard

(5.2.1) We consider the total energy of the binary system:

Eε(c) =

∫
Ω

(
f(c(x, t)) +

ε

2
|∇c(x, t)|2

)
dx, (31)

where c(x, t) is the phase function; f :R → R is a non-negative double-
well potential with two minima at c = ca, c = cb which are the prefered
states of c; Ω is the domain containing the mixture; and ∇ is the gradient
operator (in one space dimension ∇ = ∂/∂x). Also ε is a small positive

12
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dimensionless number: the larger the value of ε, the sooner ripening takes
place. The phase �eld variable, c, describes the state of the system: in the
two pure phases (solid and vapour) c takes one of the extreme values, ±1.
The system will seek its equilibrium by minimizing the energy Eε(c), while
keeping the mass

∫
Ω

c(x, t)dx constant, as we assume nothing travels into
or out of the container, Ω. The function c(x, t) then has to evolve in the
direction opposite to the gradient of Eε(c). The question is: What is the
most appropriate Hilbert space where the gradient results in a convenient
local model? This question has been addressed in [9], where it was found
that the gradient �ow

ct = −D∇Eε(c) (32)

results in the following well studied Cahn-Hillard model:

ct = −D(ε∇4c−∇2f ′(c)), for (x, t) in Ω× (0,∞) (33)

subject to the boundary conditions

∂nc = ∂n∇2c = 0, for (x, t)in ∂Ω× (0,∞) (34)

when the gradient is computed over the space H−1
0 : zero-averaged sub-

space of dual space H1(Ω)∗. In (34) ∂n represents the derivative along
the outward normal direction. Furthermore, the model requires an initial
condition c(x, 0) = c0(x).

(5.2.2) For a numerical study and properties of (33)-(34), we refer to [8],[13].
The Cahn-Hilliard model has also been used to simulate particle growth
and Ostwald Ripening [19] in Al-In system with a logarithmic potential
function f in equation (38) below.

(5.2.3) The original papers on this work, from 1958-59, are by Cahn and Hilliard
[7], [6], [8]. More recent works from the 80s and 90s are on the phase-�eld
approach to Ostwald ripening, by Küpper and Masbaum [19]. Multi-
particle di�usion models were derived by Voorhees and Glicksman [27],
[28]. A stochastic approach is reported by Bhakta and Ruckenstein [1].

(5.2.4) We also mention that an alternative way to derive the system (32)�(34)
is to consider the chemical potential:

µ =
δEε(c)

δc
, (35)

and Fick's �rst law:
J = −D∇µ (36)

followed by mass conservation:

ct +∇ · J = 0. (37)
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5.3 Numerical Treatment and Results

(5.3.1) The usual model consists of choosing a double-well potential f(c) which
includes descriptions of the molar mixing entropy, a mobility factor M ,
and a small parameter of miscibility gap γ. Although realistic values for M
and γ can be found, only a biased logarithmic potential can be suggested
of the form:

f ≈ RgT ((1+c) ln(1+c)+(1−c) ln(1−c))+∆H0c(1−c)+µA(1+c)+µB(1−c),
(38)

(see Küpper and Masbaum [19]) where the �rst group of terms describe the
molar mixing entropy, and the second group accounts for the assymetries.
In (38) Rg is the gas constant, T is the absolute temperature, ∆H0 rep-
resents the model of regular solution, and µA and µB are the free energies
of the pure phases.

(5.3.2) However, the form (38) for f was found to be rather too complicated and
an expensive function to repeatedly evaluate. Instead, the following is a
much simpler approach: rather than particle growth, here we only focus on
Ostwald Ripening. We use the relatively simple Ginzburg-Landau double-
well potential:

f(c) =
1

4
(c2 − 1)2, (39)

which has two minima, at c = −1 and c = 1. These minima represent
vapour and condensate, respectively. We take the interval for x as Ω =
(−1, 1) and set D = 1. We write the boundary conditions and the system
(33)�(34) as

u = cxx, (40)

ct = (f ′(c)− εuxx)xx,

cx(±1, t) = ux(±1, t) = 0, for t > 0

c(x, 0) = c0(x).

We spatially discretize the system (40) using centred-di�erence approxi-
mations to the second-order derivatives. We obtain an ODE system with
respect to time. To solve this system we use the MATLAB sti� solver
Ode15s. We �x the constant ε = O(10−2). Under the boundary condi-
tions, it can be easily veri�ed that mass is conserved, and that the energy
Eε(c) in (31) decreases as the evolution takes place.

(5.3.3) In Figure 3 we display the evolution of the phase variable c(x, t) in a binary
system (vapour and condensate) with three particles at t = 0. We notice
that ripening takes place around the larger particle. Figure 4 displays
similar phenomena of evolution with �ve particles at t = 0.

(5.3.4) We also observe that the energy (31) decreases while the total mass re-
mains constant, up to the numerical precision which justi�es our numerical
results.
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5.4 Comments on Model (iv)

(5.4.1) Cahn-Hilliard modelling was used to describe Ostwald Ripening, in 1-D
space & time.

(5.4.2) The potential function f can be found with further work.

(5.4.3) Bi-modal particle size distribution (PSD) is not captured.

(5.4.4) Modi�ed Phase-Field Modelling: Bimodal particle-size distribution
was explained by a phase-�eld model which takes nucleation (supercool-
ing) into account. See Wen et al. [30]. Find the right free energy func-
tion, model the dependence on temperature and investigate the processes
of �soft impingement�. See Wen et al. [30]. Consider some e�ects similar
to the nucleation process.

6 Conclusions

6.1 Points to Take Further

(6.1.1) There are several approaches to modelling powder ageing. We recommend
the following lines of research be followed up:

(6.1.2) Fundamental models: Hints at the relative importance of di�erent physical
in�uences, and separation of time scales, but what are the particle sizes
and shapes?

(6.1.3) Some further examinations and interpretations of the data are needed.
In Figure 1 (left) the �rst bump of the �bi-modal" distribution, given
the sizes involved, looks as though it contains only about 0.15% of the
mass. There are also possibly lower humps to the right � making the
distribution (at least) tri-modal. The scale is logarithmic so these could
contain more mass, given the relevant length scales, than the pronounced
left-hand bump. Within the �rst 30 minutes, Figure 1 (left) shows a shift
of the main hump to the right, corresponding to a doubling of the particle
size. Figure 1 (right) only indicates a reduction of about 20% (not 50%)
in SSA during that time.

(6.1.4) Discrete and continuum models for particle sizes: Model (ii) has nice time-
dependent equations, that can capture bimodal particle size distributions.
But what is the physical justi�cation? Can we choose realistic rate con-
stants?

(6.1.5) In the continuum Model (iii) the work may help interpret the dynamical
systems Model (ii) when the number of particle sizes N is realistically
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large but also uncomputable. In Model (iii) are we considering the right
scaling regime, or will m̂ � ĉ need investigation?

(6.1.6) In Model (iv), the Cahn-Hilliard eqs, can capture spatial interactions, but
how do we get bimodal size distributions? Can Model (iv) help inform
the choices of rate constants in Models (ii) and (iii)?

(6.1.7) Overall, in the basic science and in the mathematical modelling, there are
many challenges and useful prospectives lines of research in powder age-
ing. While some progress has been made during the study group, there is
much left to be understood and modelled in detail.
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Stabilisation Study
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Figure 1: Left-hand plot: measured particle size distribution (PSD) and its change
over time. Right-hand plot: measured speci�c surface area (SSA) as a function
of time. [Reproduced courtesy of AWE Ltd.]
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Figure 2: Chemical kinetics Model (ii): results for PSD, ck, as a function of particle
size, k. Unimodal initial data (red dots) evolves over time to a bimodal dis-
tribution (green dots). The latter are seen to sit on the long-time equilibrium
distribution (blue curve).
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Figure 3: Chemical kinetics Model (ii): inferences from equilibrium state: evapo-
ration rates λk, for �xed condensation rate γ independent of k.
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Figure 4: Chemical kinetics Model (ii): results for SSA as a function of time.
Compare with Figure 1 (right).
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Figure 5: Cahn-Hilliard Model (iv): Ripening in a binary system with initially
three particles of varying sizes. The arrow points in the direction of increasing
time. The colours label the di�erent levels of the phase variable c, from c = −1
(vapour) up to c = +1 (solid).
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Figure 6: Cahn-Hilliard Model (iv): Ripening in a binary system with initially �ve
particles of varying sizes. The colours label the di�erent levels of the phase
variable c, from c = −1 (vapour) up to c = +1 (solid)
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